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– Massively Parallel Hadoop Learning Implementation
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Background

Two Major Challenges
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Background

�Generating semantic classifiers is challenging 
from multiple perspectives:

� 1) Data is very large & typically unbalanced.

– Hundreds of thousands of examples, must scale

� 2) Concepts are difficult to model

– Requires broad low-level feature representation to 
cover various aspects of each concept.
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Review of Some Existing Methods

� Model Algorithm Based Approaches to Imbalance.

– Power SVM [Zhang et. Al. CVPR 2012]

• Show good performance, but specific to particular types of 
models.

• Doesn’t really address scale

� Data Based Approaches to Imbalance & Scale

– EasyEnsemble / BalanceCascade [Liu et al. TSMC 2009]

– SMOTE [Chawla et. al. JAIR 2002]

– More easily generalized / parallelized.

1

2
� Early fusion of a variety of features

– Very large dimensionality, slow learning and evaluation.

– Difficult to select feature combinations

– Not practical with large numbers of examples.

� Random Subspace Bagging [Ho, TPAMI 1998]

SCALE

COMPLEXITY
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Approach

Modeling
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Roughly Balanced Feature Bags

� Large scale learning problems pose 
several challenges:

– Size

– Imbalance

– Broad domain

� RBBag is “Divide and Conquer”
Learning Approach via “Bagging”

� Permits parallelization

– Both Learning & Scoring

� Reduces computational complexity

– O(x(n/x)c) < O(nc)

� Balances Data

� Implements Feature Selection

21

An approach to address both 

scalability and feature selection.
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Forward Model Selection 

� Input

– Collection of N Unit Models Ui each with weight wi
( either 1/N or training cross validation score si )

– Metric m to optimize (AP, Accuracy, Precision, Recall, F1)

� Step 1 – scoring

– Score Unit Models against Validation Dataset

� Step 2 – fusion loop

– Initialize Ensemble Model with top performing Unit Model 

– For each Unit Model Mi(x), evaluate performance m(i) 
when added to Ensemble Model with weight wi

– If no Unit Model produces increase in Ensemble m(i)
break loop

– Add to Ensemble the Unit Model that maximizes m(i)

� Output

– Final Ensemble (weighted combination) of Unit Models

Score Unit Models on 
Validation Dataset

Score Unit Models on 
Validation Dataset

Initialize Ensemble          
with best Unit Model

Initialize Ensemble          
with best Unit Model

Select and add weighted 
Unit Model to Ensemble

Select and add weighted 
Unit Model to Ensemble

Test weighted addition of 
Unit Model to Ensemble

Test weighted addition of 
Unit Model to Ensemble

while  m(i) > m(i-1)

Select final EnsembleSelect final Ensemble

Initialize pool of                
Unit Models

Initialize pool of                
Unit Models

∑
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Demo: Forward model selection chooses best unit models to boost Ensemble model performance

� Step 1: Select Unit Model U1 with best 
performance on a held-out validation 

dataset, and add to Ensemble Model E, 
which is initially empty. Weight and 
judge ensemble performance according 
to a user selected metric at a specific 
threshold (AP, Recall, Precision, etc).

� Step 2: Loop: while still models 
remaining,

– Select Unit Model Ui, weighted by 

selected metric, such that (E + Ui) 
has best performance, in terms of 

chosen metric m (AP, Precision, 
Recall, etc).

– If performance less than previous 
iteration, break from loop.

– Remove Ui from remaining models,

– Repeat Step 2

EE

U1
U1

U2
U2

U3
U3

U4
U4

U5
U5

0.14

0.22

0.34

0.11

0.02

0.38

0.34

0.23

0.44

0.56

0.45

0.4

0.53

0.48

0.34

0.44

0.56

E PerformanceModel

EE = U1
U1U3

U3 U5
U5w3 + +

wi =  cross-validation training score si (AP, or Precision, or Recall, etc.)

or 1/3 (equal weight)

w5 w1
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Approach

Features
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Global Visual Features - Spatial Granularities

Center Cross Global Grid Horizontal Horiz. Parts Layout Vertical

Color Correlogram X X X x X X

Color Histogram X X X X X X X

Color Moments X X x X

Color Wavelet x X

Color Wavelet 
Texture

X X X x X X

Fourier Polar 
Pyramid

X X

Edge Histogram X X X X X x

GIST X

Image Stats X X

Image Type X x X X x x

LBP histogram X

Maxi Thumbnail 
Vector

X

Mini Thumbnail 
Vector

X X

Siftogram X

Size Vector X

Thumbnail Vector X X

Wavelet Texture X X

Curvelet Texture x x
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[Van Gemert et al. PAMI10] Jan C.  van Gemert, , Cor J. Veenman, Arnold W. M. Smeulders and Jan-Mark Geusebroek, Visual Word Ambiguity, in IEEE Transactions on Pattern 

Analysis and Machine Intelligence, volume 32 (7), pages 1271-1283, 2010.

[Van De Sande et al. PAMI10] Koen E. A. van de Sande, Theo Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, in IEEE Transactions on 

Pattern Analysis and Machine Intelligence, volume 32 (9), pages 1582-1596, 2010.

Code available at http://koen.me/research/colordescriptors/

DETECTOR

• Dense sampling, with offset = 6 pixels

DESCRIPTORS

� SIFT [Lowe 04]: 128 dimensions

� SIFT color variants [Van de Sande et al. PAMI10]:

• RGB-SIFT : SIFT computed for every RGB channel independently: 128x3 = 384 dimensions

• HSV-SIFT : SIFT computed for every HSV channel independently: 128x3 = 384 dimensions

• C-SIFT : SIFT computed for every O1O2O3 opponent channel. O1 and O2 are normalized with                                 

the C-invariant  to eliminates intensity information: : 128x3 = 384 dimensions

BOW MODEL + SPATIAL POOLING

� For each descriptor, we computed 2 separate codebooks (vocabularies V) with 1000 elements w

K-means clustering, starting from ~250K descriptors randomly sampled from the Training set

� Soft BoW assignment using codeword uncertainty: 

� Spatial Pyramid Matching, 1x2x2 (one global level + a 2x2 grid)

� For each descriptor, 2 versions of 5000 dimensions each (one per codebook): 1000x(1+2x2)

Local SIFT-based Descriptors
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FourierPolarPyramid Feature Vector Description

Fx

Fy

� Pyramid constructed of 
Fourier space in polar 
coordinates.

� Radial levels of 1, 2, and 4 
segments.

� Angular levels of 1, 2, 4, 8, 
and 16 segments.

� 4 color channels: R, G, B, 
Gray

� Circular pre-filter to improve 
consistency of rotational 
effects across domains. 

Fig. 1: Segmentation of polar coordinates 

in Fourier-Mellin space. The average value 

of each blue region in a single color 

channel becomes a feature vector 

element. This it iterated for all regions and 

all color channels.
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Learning Semantics with Semantics

� IBM Semantic Taxonomy

– Over 600 concepts with training 
data crawled from web

– Categories cover objects, 
settings, activities, etc.

� By extracting semantic 
information from SIN training 
data, this can be used as 
another feature from which to 
learn the new SIN concepts.

activity
setting

people

types

object
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IMARS Visual Semantic Taxonomy

16

Activity

25.5k

(4GB)

29

Animal

62.4k

(11.5GB)

85

Building

View

42k

(5.75GB)

20

Disaster

Scene

9k

(2.1GB)

7

Dominant

Color

11.5k

(1.75GB)

13

Object

93.2k

(14.2GB)

124

General 

Setting

95.9k

(26.3GB)

217

People

35.8k

(2.5GB)

16

People

w/Affil.

22.1k

(1.8GB)

16

Sky 

Scene

11.3k

(2.4GB)

9

Sports

11.3k

(2.4GB)

9

2011: 

300k images 

780 classes

2012: 

500k images 

630 classes

• Adding training examples to strengthen classifiers (500K images/630 classes)

• Designing attributes that further express properties and relationships among concepts

Facet

# examples

(data size)

# categories

Key
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Semantic Model Vectors as Feature Representation

acti

vity
setting

people

types
object

Grass?

Horse?

Boats?

Air Vehicle?

Hill

Not_Hill

Outdoors?

Sky?
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Approach

Implementation
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IMARS Hadoop Implementation

� Proprietary distributed 
implementation of IMARS.

– Not reliant on any previous package 
machine learning environment for 
Hadoop; i.e. Apache Mahoot.

� Large-scale feature extraction, 
classifier training, and image scoring.

– Ability to add concepts, examples, 
and features, without throughput 
concerns.

� Feature Extraction: 

– Map Step: parallelized over 
concepts

� Ensemble Model Learning: 

– Mapper: parallelized SVM training 
over bags of feature types, 
granularity, randomly sampled data 
during unit model training Map job. 

– Reducer: parallelized over concept 
classifiers during model fusion 

� Image scoring:

– Mapper: unit model evaluation on 
image features

– Reducer: sum of unit models into 
fusion models
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IMARS Hadoop Implementation

Feature Mapper

Feature Mapper

Feature Mapper

Feature Mapper

Overall Architecture of Hadoop Distributed Learning System

Model Mapper

Model Mapper

Model Mapper

Model Mapper

Job

Tracker

Validate Mapper

Validate Mapper

Validate Mapper

Fuse Reducer

Fuse Reducer

Validate Mapper

Unit Model Learning Statistical 

Machine Learning

Hadoop Map-Reduce Core System

Base Models

Hadoop Distributed File System (HDFS)

Classifiers

Key-Value Transfer HDFS Read / Write

Features

Feature
Extraction

Images

T
a
s
k
 L

is
t

Performance Scores

Hadoop/Standalone
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IMARS Hadoop Implementation

Overall Architecture of Hadoop Distributed Evaluation System

Job

Tracker

Eval Mapper

Eval Mapper

Eval Mapper

Fuse Reducer

Fuse Reducer

Eval Mapper

Distributed Evaluation System

Hadoop Map-Reduce

Hadoop Distributed File System (HDFS) Key-Value Transfer HDFS Read / Write

FeaturesImages

T
a

s
k

 L
is

t

Evaluation ScoresClassifiers

OR

Parallelized by 
classifier & image 
pair subsets in 

mappers.

Reducers key
resultant scores by 
classifier
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Images

8 Features

4 Granularities

Dog, edge histogram grid 14

…

…

…

…

…
…

…

…

…

…

…
…

…

…

…

…

…

…
…

…

…

…

…

…

…
…

…

…

… …

…
…

…

…
…

…

…

…

…

…

…

…

Dog

Cat

…

…
…

…

…

…

…

…
…

…

…

…

…

…
…

…
…

…
…

…

…

…

…

…
…

…

…

…

…

…
…

…

…

…
…

…

…

…

…

…
…

…

…

…

…

…
…

…



© 2011 IBM Corporation 
and Columbia University 23

Results
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Results

SIN Test Performance (46 Concepts)
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MAP = 0.3588

Test set re-scored and compared to ground truth 

once to avoid possibility of overfitting.

Best SIN Run: 0.321

Our Previous: 0.14

Official submission compromised by incorrect 

ground truth data and scoring system bug.

Sampling: Up to 3000 positive examples, and 3000 negative examples per category. Including BRNO annotations.
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Top 20 Feature MAP Performance 

0.63341color_histogram_grid

0.63417color_correlogram_cross

0.63726gist_layout

0.64486lbp_histogram_horizontalparts

0.65502color_correlogram_grid

0.65678lbp_histogram_layout

0.65791lbp_histogram_grid7

0.65795color_correlogram_layout

0.65873color_correlogram_horizontalparts

0.65906lbp_histogram_grid

0.661hsvsift

0.66284sift

0.66371hsvsiftVLFEAT

0.66431rgbsift

0.66576rgbsiftVLFEAT

0.67694siftVLFEAT

0.68636csift

0.69013csiftVLFEAT

0.71194IBM_ModelVector

0.71782IBM_ModelVector.sig

FEATURE TYPE MAP FEATURE TYPE MAP

MAP evaluated from a single feature “bag” performance 

on 20% validation data across all 46 categories 
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Future Directions

� Current Ensemble Model Fusion strategies are a retrospective approach: 

– Unit Models learning decoupled from ensemble fusion

– Once all unit models are trained, go select which combination is the best

� A prospective approach intricately tied with Unit Model training would be 
preferred and has potential to improve performance

– Method 1: Train one batch of unit models for all features and granularities on a 
subsample of data. For the next round of unit model training, use not the ground 
truth labels, but the residual (incorrect classifications) from the first round of 
models, or other similar methods to reduce error correlation between unit models. 
[Levy, Wolf, ECCV 2012]

– Method 2: Train one batch of unit models for all features and granularities on a 
subsample of data. For the next round of unit model training, use only data 
misclassified by first round of models (but use original ground truth labels).
[Khoshgoftaar et. al., IEEE TSMC 2011]

� Potential downsides:

– May be more difficult to parallelize in a computationally balanced fashion.



© 2011 IBM Corporation 
and Columbia University 27

Thank you!

�Questions?


